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Abstract. We consider the problem of optimally covering plane domains by a given number of
circles. The mathematical modeling of this problem leads to a min–max–min formulation

which, in addition to its intrinsic multi-level nature, has the significant characteristic of being
non-differentiable. In order to overcome these difficulties, we have developed a smoothing
strategy using a special class C1 smoothing function. The final solution is obtained by solving

a sequence of differentiable subproblems which gradually approach the original problem. The
use of this technique, called Hyperbolic Smoothing, allows the main difficulties presented by
the original problem to be overcome. A simplified algorithm containing only the essential of
the method is presented. For the purpose of illustrating both the actual working and the

potentialities of the method, a set of computational results is presented.
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1. Introduction

Let S be a finite region in R2. A set of q figures constitutes a covering of
order 1 of S if each point s 2 S belongs to at least one figure. Coverages of
a higher order can be defined in a similar manner.
Problems inherent to the covering of R2 regions by circles, of R3 regions

by spheres, and even regions in higher dimensional spaces have been the
object of research for many decades. Important results in the study of these
problems appear in Rogers (1964), Toth (1964), Toth (1983), Conway and
Sloane (1988) and Hales (1992). The covering of plane domains by a set of
ellipses was studied by Galiyev (1995).
In this paper, we consider the special case of covering a finite plane

domain S optimally by a given number q of circles Ci ¼ 1; . . . ; q. This
problem arises in a large number of practical applications, such as: solving
some crystallography models, placing service centers, or locating and
dimensioning telecommunications centers. The study of the latter topic,
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incidentally, provided the initial motivation for the development of this
work.
The core focus of this paper is the smoothing of the min–max–min

problem engendered by the modeling of the covering problem. In a sense,
the process whereby this is achieved is an extension of a smoothing
scheme, called Hyperbolic Smoothing, presented in Santos (1997) for non-
differentiable problems in general and in Chaves (1997) for the min–max
problem. This technique was developed through an adaptation of the
hyperbolic penalty method originally introduced by Xavier (1982).
By smoothing we fundamentally mean the substitution of an intrinsically

non-differentiable three-level problem by a differentiable single-level alter-
native. This is achieved through the solution of a sequence of differentiable
problems which gradually approach the original problem.
Several researchers have presented alternative smoothing methods. The

solution of the finite min–max problem, generally non-differentiable, has
been a special motivation for the development of those methods, such as,
for example, the strategies indicated in Bertsekas (1982), Polyak (1988),
Pillo et al. (1993), Pinar and Zenios (1994) and Galiyev (1997). An exten-
sive survey on these problems can be found in Du and Pardalos (1995).
This work is organized in the following way. We begin with a detailed

introduction to the covering problem in Section 2. The new methodology
is described in Section 3. The algorithm and the illustrative computational
results are presented in Sections 4 and 5. We then conclude in Section 6.

2. The Covering Problem as a Min–Max–Min Problem

In order to formulate the original covering problem as a min–max–min
problem, we proceed as follows. Let xi; i ¼ 1; . . . ; q be the centers of the
circles that must cover a domain S � R2. The set of these center coordi-
nates will be represented by X 2 R2q. Given a point s of S, we initially cal-
culate the distance from s to the center in X that is nearest. This is given
by

dðs;XÞ ¼ min
xi2X
ks� xik2: ð1Þ

Distance dðs;XÞ provides a measurement of the covering for a specific
point s 2 S. A measurement of the quality of a covering of domain S by
the q circles is, of course, provided by the largest distance dðs;XÞ, which
corresponds exactly to the most critical covering of a point. Letting DðXÞ
denote this largest distance, we have

DðXÞ ¼ max
s2S

dðs;XÞ: ð2Þ
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The optimal placing of the centers must provide the best-quality covering
for S, that is, it must minimize the most critical covering. If X� denotes an
optimal placement, then

X� ¼ argmin
X2R2q

DðXÞ; ð3Þ

where X is the set of all placements. Using (1)–(3), we finally arrive at

X� ¼ argmin
X2R2q

max
s2S

min
xi2X
ks� xik2: ð4Þ

3. Transforming the Problem

In order to solve (4) numerically, we first discretize the domain S into a
finite set of m points sj; j ¼ 1; . . . ;m, thus obtaining

X� ¼ argmin
X2R2q

max
j¼1;...;m

min
xi2X

ksj � xik2 ð5Þ

If for fixed j, we let zjðXÞ denote the innermost minimum in (5), that is

zjðxÞ ¼ min
xi2X
ksj � xik2; ð6Þ

then, zjðxÞ must necessarily satisfy the following set of inequalities:

zjðxÞ � ksj � xik2O0; i ¼ 1; . . . ; q: ð7Þ
Similarly, if zðXÞ denotes the maximum in (5) for fixed X, that is

zðXÞ ¼ max
j¼1;...;m

zjðXÞ; ð8Þ

then zðXÞ is required to satisfy the constraints

zðXÞPzjðXÞ; j ¼ 1; . . . ;m: ð9Þ
and the solution of the outermost level of problem (5), is not altered if we
dissociate z and X thus obtaining the equivalent problem

minimize z

subject to zj ¼ min
i¼1;...;q

ksj � xik2; j ¼ 1; . . . ;m

zPzj; j ¼ 1; . . . ;m:

ð10Þ

Now, consider the similar optimization problem on the same variables
z; z1; . . . ; zm; x1; . . . ;xq

minimize z

subject to zj � ksj � xik2O0; j ¼ 1; . . . ;m; i ¼ 1; . . . ; q

zPzj; j ¼ 1; . . . ;m:

ð11Þ

OPTICAL COVERING OF PLANE DOMAINS 495



This problem is not equivalent to (10) since the variables zj are not
bounded from below, so neither is z. In order to obtain the desired equiva-
lence we must, therefore, modify problem (11). We do so by first letting
uðyÞ denote maxf0; yg and then observing that from the first set of inequal-
ities in (11), it follows that

Xq

i¼1
uðzj � ksj � xik2Þ ¼ 0; j ¼ 1; . . . ;m: ð12Þ

For fixed j and assuming d1 < � � � < dq with di ¼ ksj � xik2, Figure 1
illustrates the first three summands of (12) as a function of zj.
Using (12) in place of the first set of inequalities in (11) we obtain an

equivalent problem maintaining, therefore, the undesirable property that z
and zj still have no lower bound. Considering, however, that the objective
function of problem (11) will force z and, consequently, each zj,
j ¼ 1; . . . ;m, downward, we can think of bounding the latter variables from
below by considering ‘‘>’’ in place of ‘‘¼’’ in (12) and considering the
resulting ‘non-canonical’ problem

minimize z

subject to
Xq

i¼1
uðzj � ksj � xik2Þ > 0; j ¼ 1; . . . ;m:

zPzj; j ¼ 1; . . . ;m:

ð13Þ

The canonical formulation can be recovered from (13) by perturbing (12)
and considering the modified problem:

Figure 1. Summands in (12).
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minimize z

subject to
Xq

i¼1
uðzj � ksj � xik2ÞPe; j ¼ 1; . . . ;m;

zPzj; j ¼ 1; . . . ;m

ð14Þ

for e > 0. Since the feasible set of problem (13) is the limit of that of (14)
when e! 0þ, we can then consider solving (13) by solving a sequence of
problems like (14) for a sequence of decreasing values for e that
approaches 0.
We can now present the main theoretical results that support our meth-

odology for covering a plane domain optimally.

THEOREM 1. Problems (10) and (13) have the same optimal value.

Proof. Let z0 be the optimum value of problem (13) and
ðz00; ðz00j ; j ¼ 1; . . . ;mÞ, ðx00i ; i ¼ 1; . . . ; qÞÞ an optimum solution of problem
(10). Also consider for any j 2 f1; . . . ;mg, the set

Ij¼4f1 2 fi; . . . ; qgjz00j ¼ ksj � x00i k2g:

Now observe that, for any e > 0, ðz00 þ e; ðz00j þ e; j ¼ 1; . . . ;mÞ,
ðx00i ; i ¼ 1; . . . ; qÞÞ is a feasible solution of (13) since:

Xq

i¼1
uðz00j þ e� ksj � x00i k2Þ ¼

X

fijz00j þePksj�x00i k2g
ðz00j þ e� ksj � x00i k2Þ

P
X

fi2Ijg
ðz00j þ e� ksj � x00i k2Þ ¼ #ðIjÞ: ePe > 0

for any j 2 f1; . . . ;mg and

z00 þ ePz00j þ e; j ¼ 1; . . . ;m:

Thus, for every e > 0 (13) has a feasible solution where its objective
function values z00 þ e which implies that z0Oz00.
On the other hand, for any feasible solution ð~z; ð~zj; j ¼ 1; . . . ;mÞ;
ð~xi; i ¼ 1; . . . ; qÞÞ of (13) there is ~i 2 f1; . . . ; qg j ~zj > ksj � ~x~ik2, otherwise
Rq
i¼1uð~zj � ksj � ~xik2Þ ¼ 0. This is equivalent to say that
~zj > mini ðksj � ~xik2Þ and as ~z > ~zj;8j 2 f1; . . . ;mg; the following

sequence of relations holds:

~z Pmax
j

~zjPmax
j

min
i
ksj � ~xik2P min

ðxi;i¼1;...;qÞ
max

j
min
i
ksj � xik2 ¼ z00:

Therefore, z00 is a lower bound for the value of z at any feasible solution of
(13) which immediately leads to z0Pz00. As the opposite inequality is also
valid, z0 and z00 must be equal, completing the proof. (
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Henceforth in this section we let z0; z01 . . . ; z0m; x
0
1; . . . ;x0q be an optimal

solution of problem (13). Because u is non-decreasing and z0Pz0j for
j ¼ 1; . . . ;m, we have

Xq

i¼1
uðz0 � ksj � x0ik2ÞP

Xq

i¼1
uðz0 � ksj � x0ik2Þ > 0; j ¼ 1; . . . ;m: ð15Þ

We may then substitute z0 for each of z01; . . . ; z0m and still have a feasible
solution of (13) that is obviously optimal, since we have not changed the
solution value. This observation constitutes Preposition 1, given next,
which allows a considerable reduction in the problem’s dimension by the
elimination of variables z0l; . . . ; z0m.

PROPOSITION 1. Problem (13) admits at least one optimal solution for
which z0j ¼ z0; j ¼ 1; . . . ;m.

Now, consider the problem:

minimize z

subject to
Xq

i¼1
uðz� ksj � xik2Þ > 0; j ¼ 1; . . . ;m:

ð16Þ

Problem (13) is the limit of (14) when e! 0þ. A similar observation is
valid for problem (16).
It must be emphasized that problem (16) is defined in a ð2qþ 1Þ-dimen-

sional space, much smaller, therefore, than the solution space of problems
(10) and (13), whose dimension is ð2qþmþ 1Þ. Thus solving (16) in place
of problem (13), if possible, will be certainly computationally advanta-
geous. Proposition 1 leads exactly to the equivalence between the two
problems, which constitutes Theorem 2, given next.

THEOREM 2. Problems (16) and (13) are equivalent to each other.

Proof. If x�; z�; z�j ; j ¼ 1; . . . ;m is an optimum solution of problem (13) then
x�; z� is a feasible point for problem (16), since, due to the definition of the
function uð:Þ, satisfying the constraints of (13) implies that those of (16) are
also satisfied.
Conversely, let x̂; ẑ be an optimal solution of problem (16). Defining:

ẑj ¼ ẑ; j ¼ l; . . . ;m; ð17Þ
x̂; ẑ; ẑj; j ¼ l; . . . ;m will be a feasible point for problem (13). (

4. Smoothing the Problem

Although problem (16) has a reduced dimension, the definition of function
u endows it with an extremely rigid non-differentiable structure, which
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makes its computational solution very hard. In view of this, the numerical
method we adopt for solving problem (16), takes a smoothing approach.
From this perspective, let us define the function:

/ðy; sÞ ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ s2

p� �
=2 ð18Þ

for y 2 R and s > 0.

Function / constitutes an approximation of function u. Adopting the
same assumptions used in Figure 1, the first three summands of (12) and
their corresponding smoothed approximations, given by (18), are depicted
in Figure 2.

In addition, / has the following properties:
(a) /ðy; sÞ > uðyÞ; 8s > 0;
(b) lim

s!0
/ðy; sÞ ¼ uðyÞ;

(c) /ð:; sÞ is an increasing convex C1 function.

These properties allows us to seek a solution to problem (16) by solving
a sequence of subproblems of the form

minimize z

subject to
Xq

i¼1
/ðz� ksj � xik2; sÞPe; j ¼ 1; . . . ;m:

ð19Þ

This process constitutes the Hyperbolic Smoothing Algorithm, described
below in a simplified form.

Simplified Algorithm

Initialization Step. Choose values 0 < q2Oq1 < 1; let k ¼ 1 and choose ini-
tial values: x0; e1 and s1.

Figure 2. Original and smoothed summands in (12).
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Main Step. Repeat indefinitely
Solve problem (19) with s ¼ sk and e ¼ ek, starting at the initial point

xk�1, and let xk be the solution obtained.
Let skþ1 ¼ q1s

k; ekþ1 ¼ q2e
k, and k :¼ kþ 1.

Just as in other smoothing methods, the solution to the covering problem
is obtained by resolving an infinite sequence of constrained minimization
subproblems (k ¼ 1; 2; . . . in the Main Step).
Notice that the algorithm causes s and e approach 0, so the constraints of

the subproblems it solves, given as in (19), tend to those of (16). Also, the
algorithm assumes that xk is a global solution to the kth smoothed subprob-
lem it solves. Under this hypothesis, and owing to the continuity properties
of all functions involved, the sequence z1; z2; . . . of optimal values tends to
the optimal value of (16). Moreover, as q2Oq1, the optimal solution of a
subproblem is feasible for the next one, thus causing the optimal values to
decrease monotonically, since the objective function is always the same.

5. Computational Results

In order to illustrate the functioning of the method, we present some com-
putational results on two small synthetic test instances, whose optimal
solutions are known beforehand. They have been created in order to per-
form a preliminary validation of the method.
Figures 3 and 4 show graphic depictions of the two instances. The first

one is the domino instance, consisting of 6 points to be covered by 2
circles. The second is the rosaceous instance with 4 petals, where 24 points
must be covered by 4 circles. The solutions obtained were identical to the
exact solutions to the 15th decimal place. In addition, we obtained results
of similar quality solving rosaceous problems with 8, 12, 16, 24, 32, and 48
petals, with 6 points by petal in each one.
Table 1 shows the sequence of points generated by the method in solving

the first instance. Columns k and sk represent the iteration and the value
of the smoothing parameter, while the pair ðak1; bk1Þ represents the coordi-
nates of the center of the first circle xk1, the pair ðak2; bk2Þ the coordinates of
the center of the second circle, and zk the radius of the circles. The results
obtained in the computational experiments with problems of larger dimen-
sion showed analogous behavior.
Figures 5–7 show the computational results obtained in the solution of

six real covering problems: The Netherlands (5 circles), Brazil (5 circles),
the Brazilian states of Ceará (8 circles) and Rio de Janeiro (9 circles), the
state of New York (7 circles) and the USA (5 circles). The number of dis-
cretization points were, respectively, 9220, 6620, 3160, 3539, 7225, and
4752. The execution time in seconds were 109.02, 93.87, 78.55, 70.52,
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116.17, and 74.04, respectively. Problem (19) was solved by the Hyperbolic
Penalty Method (cf. Xavier, 1982). In this method, the solution is obtained
by solving a sequence of unconstrained subproblems. The unconstrained
minimizations were carried out by means of a Quasi-Newton algorithm
employing the BFGS updating formula from the Harwell Library. The exe-
cution times reported were obtained on an Intel 486 system running at
150MHz. The precision of all solutions was limited by the resolution
adopted for the meshes.

Table 1. Sequence of points generated in solving the first instance

k sk ak
1 bk

1 ak
2 bk

2 zk

1 0.1E–1 0.4934416 0.5003126 1.506524 0.4999621 0.7148618

2 0.1E–2 0.4976222 0.4976221 1.502381 0.5023814 0.7074767

3 0.1E–3 0.4994190 0.4994190 1.500581 0.5005810 0.7071485

4 0.1E–4 0.4998605 0.4998605 1.500139 0.5001395 0.7071115

5 0.1E–5 0.4999668 0.4999668 1.500033 0.5000332 0.7071073

6 0.1E–6 0.4999921 0.4999921 1.500008 0.5000079 0.7071068

7 0.1E–7 0.4999981 0.4999981 1.500002 0.5000019 0.7071068

8 0.1E–8 0.4999996 0.4999996 1.500000 0.5000004 0.7071068

9 0.1E–9 0.5000000 0.5000000 1.500000 0.5000000 0.7071068

Solution – 0.5000000 0.5000000 1.500000 0.5000000 0.7071068

Figure 3. The first instance.

Figure 4. The second instance.
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6. Conclusions

In view of the results obtained, where the proposed algorithm performed
efficiently and robustly in accordance to the theory developed, we believe
that the algorithm can be used to solve large, practical optimal covering
problems.
Moreover, it must be observed that the methodology introduced in this

article can be applied to any min–max–min problem. Among them, we con-

Figure 5. Coverages of the Netherlands and of Brazil.

Figure 6. Coverages of the Brazilian states of Ceara and Rio de Janeiro.
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sider it to be particularly interesting to try this approach on the problem of
controlling the water level of a power plant reservoir (cf. Demyanov, 1971).
A similar problem is the one of locating base radio stations (The BRS

problem) so that any site in a region S can be reached, an application that
emerged in the area of cellular telephony. The sketch proposed in this
paper can be used to obtain a first approximation to that problem, and
can also be adapted to approach several of its variations, such as, the one
in which a subset of stations already exists and another in which the loci
of the stations are constrained to lie in a subset of S.
There are several possibilities for the continuation of this work. One

alternative to be explored is to make the mesh points, that must be covered
at an iteration of the algorithm, be chosen in function of the preceding iter-
ation solution in a way that considerably reduces the number of them. Such
a reduction would make it possible to consider schemes in which, instead of
working with a constant discretization of the region S, we could increase
the precision of the grid at every iteration. Each new grid, however, would
be constrained to the subset of S consisting of points y satisfying mini¼1;...;q
ky� xk�1i k2 > r zk�1, where r is a number less than 1 but close to 1.
Another variant to be tested is to append to the method a final phase

comprising a linear search algorithm. We recall that, if the region S to be
covered is polygonal, as in most practical cases, then the function
F : si; i ¼ 1; . . . ; q �! max

y2S
min

i¼1;...;p
ky� sik has directional derivatives for all

directions in R2q (cf. Oliveira, 1979). Such derivatives are also max–min
functions whose computational complexity is dependent not only on the
number of the covering elements q but also on the amount of points in S
that are ’worst covered’ by xi; i ¼ 1; . . . ; q, and on how many of these
points are on the region’s border. Computing them, however, has the same
complexity as calculating F, which makes the use of linear search methods
to obtain optimal coverings by circles an option to be considered. Finally
we must remark that the methodology described in this work can be easily

Figure 7. Coverages of the state of New York and of the USA.
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adapted to similar problems in the contexts of covering, packing(Maranas
et al., 1995) and clustering.
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